Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(47): 13902-13907, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38075641

RESUMO

The selective installation of fluorine-containing groups into biologically relevant molecules has been used as a common strategy for the development of pharmaceutically active molecules. However, the selective incorporation of gem-difluoromethylene groups next to sterically demanding secondary and tertiary alkyl groups remains a challenge. Herein, we report the first cobalt-catalyzed regioselective difluoroalkylation of carboxylic acid salts. The reaction allows for the facile construction of various difluoroalkylated products in good yields tolerating a wide range of functionalities on either reaction partner. The potential of the method is illustrated by the late-stage functionalization of molecules of biological relevance. Mechanistic studies support the in situ formation of a cobalt(i) species and the intermediacy of difluoroalkyl radicals, thus suggesting a Co(i)/Co(ii)/Co(iii) catalytic cycle.

2.
Chemistry ; 29(58): e202302174, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37467152

RESUMO

In recent years, there has been a concerted drive to develop methods that are greener and more sustainable. Being an earth-abundant transition metal, cobalt offers an attractive substitute for commonly employed precious metal catalysts, though reactions engaging cobalt are still less developed. Herein, we report a method to achieve the decarboxylative allylation of nitrophenyl alkanes, nitroalkanes, and ketones employing cobalt. The reaction allows for the formation of various substituted allylated products in moderate-excellent yields with a broad scope. Additionally, the synthetic potential of the methodology is demonstrated by the transformation of products into versatile heterocyclic motifs. Mechanistic studies revealed an in situ activation of the Co(II)/dppBz precatalyst by the carboxylate salt to generate a Co(I)-species, which is presumed to be the active catalyst.

3.
Chemistry ; 26(54): 12454-12471, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32449820

RESUMO

Recently, dual-catalytic strategies towards the decarboxylative elimination of carboxylic acids have gained attention. Our lab previously reported a photoredox/cobaloxime dual catalytic method that allows the synthesis of enamides and enecarbamates directly from N-acyl amino acids and avoids the use of any stoichiometric reagents. Further development, detailed herein, has improved upon this transformation's utility and further experimentation has provided new insights into the reaction mechanism. These new developments and insights are anticipated to aid in the expansion of photoredox/cobalt dual-catalytic systems.

4.
J Org Chem ; 83(3): 1431-1440, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29341612

RESUMO

Rapid reaction of NaBH4 with MeOH precludes its use as a solvent for large-scale ester reductions. We have now learned that a catalytic amount of NaOMe (5 mol %) stabilizes NaBH4 solutions in methanol at 25 °C and permits the use of these solutions for the reduction of esters to alcohols. The generality of this reduction method was demonstrated using 22 esters including esters of naturally occurring chiral γ-butyrolactone containing dicarboxylic acids. This method permits the chemoselective reductions of esters in the presence of cyano and nitro groups and the reductive cyclization of a pyrrolidinedione ester to a fused five-membered furo[2,3-b]pyrrole and a (-)-crispine A analogue in high optical and chemical yields. Lactones, aliphatic esters, aromatic esters containing electron-withdrawing groups, and heteroaryl esters are reduced more rapidly than aryl esters containing electron-donating groups. The 11B NMR spectrum of the NaOMe-stabilized NaBH4 solutions showed a minor quartet  due to monomethoxyborohydride (NaBH3OMe) that persisted up to 18 h at 25 °C. We postulate that NaBH3OMe is probably the active reducing agent. In support of this hypothesis, the activation barrier for hydride transfer from BH3(OMe)- onto benzoic acid methyl ester was calculated as 18.3 kcal/mol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...